

Alvotech & Membrane Technology

Snorri Halldorsson, PhD

Director Facilities, Engineering & EHS

CONTENT OVERVIEW

- 1 Alvotech production process overview
- 2 Membrane technology & water purification
- 3 Membrane technology in process technology

alvoter

PRODUCTION FLOW CHART

\rm Alvotech

PRODUCTION FLOW CHART

\rm \rm Alvotech

© 2018 ALVOTECH. ALL RIGHTS RESERVED

Biotech characteristics

- > Large volumes of purified water used
- > Delicate macromolecules sensitive to temperature and environment
- > Produced by biological processes sensitive to contaminants
- > Products intended for injection sterility essential

Membrane technology and water purification

- Pharmaceutical regulations define several grades of purified water, the most commonly used in industry are Purified Water (PW) and Water for Injection (WFI).
- > In basic terms, PW is required for non-sterile products while for sterile products WFI is used.
- > Traditional water purification included filtration, followed by distillation
- > Purified Water has for decades been produced by "cold" techniques
- > Filtration and ion exchange deionisation.
- Ion exchange with resins that needed regeneration has now been replaced with electrodeionisation (MT) which is can be operated continuously
- > Filtration has been replaced with reverse osmosis again membrane technology

Membrane technology and water purification

- > WFI was required to be prepared by distillation
- Upon review around 2000, membrane technology was found to lack robustness for microbiological quality. Concerns included microbial fouling (biofilms) on membranes, and potential membrane integrity failures.
- In 2010-2011 further review led to an acceptance of non-distillation techniques and since 2017 WFI can be produced using membrane technologies.
- > Typical process:
 - > Particle filtering
 - > Water softening (not needed in Iceland...)
 - > Chlorine removal (not needed in Iceland...)
 - > Reverse osmosis
 - > Electrodeionisation
 - > Ultrafiltration

Product purification

- Traditional small molecule pharmaceutical active ingredients
 - Prepared by synthesis or from natural sources
 - Purified by "traditional" methods:
 - Crystallisation, distillation, phase transfers/extraction etc.
- Biotechnology macromolecules
 - Prepared using biological processes
 - Typically in solution throughout not isolated as pure substances

Membrane technology and product purification

- Non-membrane purification techniques include preparative chromatography
 - > Size-exclusion, ion exchange or ligand binding
- > Product purification steps where membrane filtration is used:
 - > Microfiltration filtration for harvest cells retained while product passes
 - > Nanofiltration to retain potential viruses while allowing product to pass
 - Concentration and buffer exchange: Ultrafiltration/diafiltration using tangential flow
 - Dilute solution of product is circulated over ultrafiltration membrane to concentrate product and remove smaller solutes in permeate. A suitably formulated product solution is added containing any desired solubilizing or stabilizing ingredients.

Membrane technology advantages

- > Cold processes less energy use
- > Cold processes allows use on sensitive molecules
- > Steady state or continuous processes less process variability

Thank you!

\rm Alvotech

© 2018 ALVOTECH. ALL RIGHTS RESERVED